

SMALOG EXPERIENCE and OUTCOMES

assoc. prof. Alexander Rossolov

O.M. Beketov National University of Urban Economy in Kharkiv

Department of Transport Systems and Logistics

1

SmaLog TRAINING

RESEARCH and EDUCATION	
activities	TRAINING RESULTS INTERMEDIATE REPORT #1
detrvities	INTERMEDIATE REPORT #1
assoc. prof. Alexander Rossolov	assoc. prof. Alexander Rossolov
National University of Urban Economy in Kharkiv	National University of Urban Economy in Kharkiv
Department of Transport Systems and Logistics	Department of Transport Systems and Logistics
Alexander Rossolov National University of Urban Economy in Kharkiv 1	Alexander Rossolov National University of Urban Economy in Kharkiv 1
	Co-funded by the Erasmus+ Programme of the European Union
TRAINING RESULTS	TRAINING RESULTS
INTERMEDIATE REPORT #2	FINAL REPORT
assoc. prof. Alexander Rossolov	assoc. prof. Alexander Rossolov
National University of Urban Economy in Kharkiv	National University of Urban Economy in Kharkiv
Department of Transport Systems and Logistics	Department of Transport Systems and Logistics
Alexander Rossolov National University of Urban Economy in Kharkiv 1	Alexander Rossolov National University of Urban Economy in Kharkiv 1

RESEARCH (Freight)

Last mile deliveries problems - case of Casablanca (1/2)

Parameter of service polygon	Numerical value
City area, km ²	384
City population, thousand people	3,356
Type of street-road network	radial-circular
Number of Bim Stores customers, units	40
Density of Bim Stores customers location, units/km ²	0.104
Average radius of servicing a single Bim Stores' shop, km	1.75

No. of alternative delivery system	Number of routes in the system, units	Total mileage when loaded, km	Total mileage along the routes, km	Mean value of the cargo capacity utilization factor	Mean value of the mileage utilization coefficient	Total delivery time, h	Daily volume of transportation , pallets
1	7	294.2	467.0	1.00	0.63	34.76	70
2	12	414.4	722.0	0.90	0.57	50.86	108
3	5	233.7	360.7	0.86	0.65	28.73	69
4	7	284.9	468.4	0.96	0.61	37.31	108
5	9	323.4	563.0	0.93	0.57	40.84	84
6	6	246.1	398.9	0.88	0.62	31.97	84
7	5	222.0	356.1	0.94	0.62	28.67	69
8	7	284.9	468.4	0.96	0.61	37.31	108
9	б	234.3	387.1	0.92	0.61	31.62	85

Alexander Rossolov

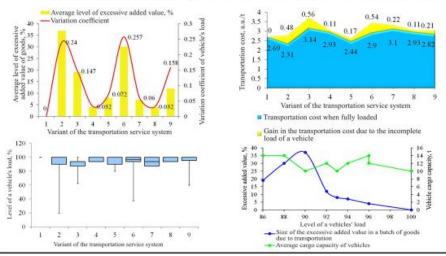
National University of Urban Economy in Kharkiv

3

RESEARCH (Freight)

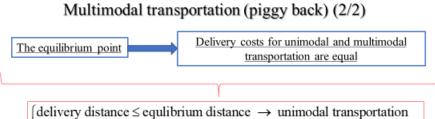
Multimodal transportation (piggy back) (1/2)

<u>The aim</u> – to compare the effectiveness of usage of unimodal (automobile) and multimodal (piggy back) variants of transportation and define the rational parameters of the alternative transportation systems.



RESEARCH (Freight)

Last mile deliveries problems - case of Casablanca (2/2)



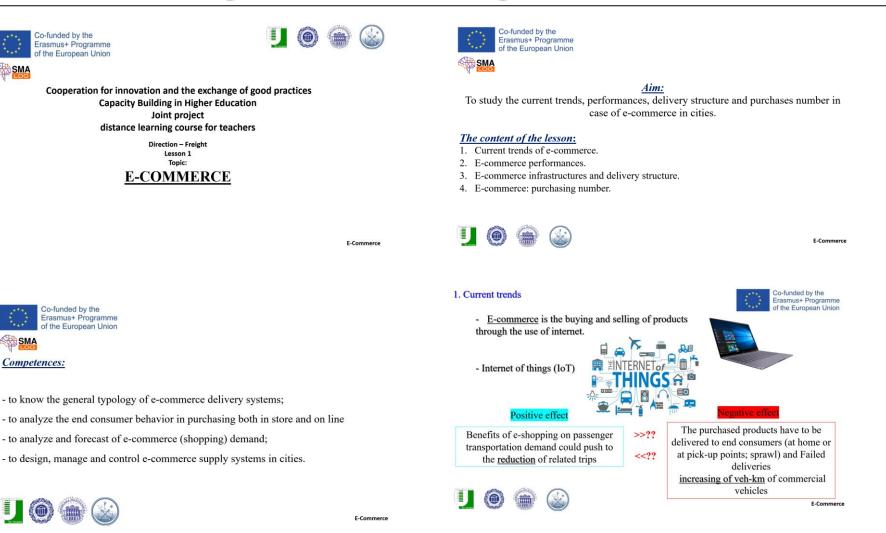
Alexander Rossolov National University of Urban Economy in Kharkiv

4

RESEARCH (Freight)

delivery distance \leq equilibrium distance \rightarrow unimodal transportation	
delivery distance > equilibrium distance \rightarrow piggy back transportation	

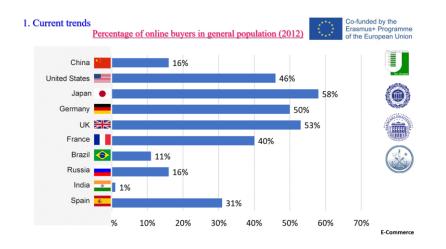
	Waiting time for				Cl	ass of car	go			
m 1	departure at the		1			2			3	
Truck capacity, t	railway terminal,			Т	rucking (distance s	pecific w	eight, rat	io	
	days	0,1	0,2	0,3	0,1	0,2	0,3	0,1	0,2	0,3
20	0	351	400	465	394	450	523	449	513	597
20	3,5	680	776	901	689	786	913	699	798	929
	0	298	339	393	339	385	447	391	445	518
25,5	3,5	656	746	866	662	754	875	669	763	887



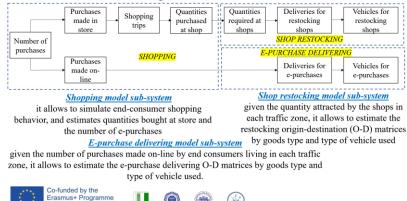
Alexander Rossolov

National University of Urban Economy in Kharkiv

EDUCATION MATERIALS BRANCH


Finalizing the distance learning lesson for teachers

EDUCATION MATERIALS BRANCH


Finalizing the distance learning lesson for teachers

E-Commerce

3. E-commerce and in-store modelling framework

of the European Union

1. Current trends

E-shopping delivery systems > Attended delivering (may cause costs increase)

>Alternative delivery solutions to minimise the problem of failed deliveries and the high costs of failed attended home deliveries.

Unattended delivery systems at the customer's home include the use of:

o Reception boxes

o Delivery boxes

o Controlled access systems

Unattended delivery systems

away from the customer's home include:

> o Pick-up points o Collection points

o Locker banks

E-Commerce

4. E-commerce: purchasing number

THE UTILITY FUNCTION PARAMETERS VALUES

				The par	ameters of	the uti	lity functi	on	
Type of goods			Den	nographi	<u>c</u>			Economic	
50043	young	male	fem	high	medium	comp	student	housewife	employee
clothing	0.34	-	-	-	-	-	0.41	-	-
electronics	-	1.44	-	-	0.78	-	-	-	-
hygiene and household products	-	-	0.27	-0.57	-	-	-	0.50	-
other	-	0.71	-	-	0.23	-0.22	-	-	-0.24
Eras	unded by ti mus+ Prog e Europear	ramme	U	۲	۲				E-Commerce

RESEARCH BRANCH

PAPERS REVIEW ON VEHICLES GPS DATA

- 1. Marra, Alessio D.; Becker, Henrik; Axhausen, Kay W.; Corman, Francesco (2018). Developing a passive GPS tracking system to study long-term travel behavior. Research Collection, ETH Zurich, 29 p.
- Jameson L. Toole, Serdar Colak, Bradley Sturt, Lauren P. Alexander, Alexandre Evsukoff, Marta C. González (2015). The path most traveled: Travel demand estimation using big data resources. Transportation Research Part C, 16 p.
- Anda C., Fourie P., Erath A. (2016). Transport Modelling in the Age of Big Data. Work Report, Singapore-ETH Centre, 44 p.
- Croce A. I., Musolino G., Rindone C., Vitetta A. (2019). Transport System Models and Big Data: Zoning and Graph Building with Traditional Surveys, FCD and GIS. ISPRS Int. J. Geo-Inf., 17 p.
- Grengs J., Wang X., Kostyniuk L. (2008). Using GPS Data to Understand Driving Behavior, Journal of Urban Technology, Volume 15, Number 2, p. 33–53.
- Jiang B. (2019). Spatial Heterogeneity, Scale, Data Character, and Sustainable Transport in the Big Data Era. E. G. Nathanail and I. D. Karakikes (Eds.): CSUM 2018, AISC 879, pp. 730–736.
- Richard J. Lee, Ipek N. Sener, and James A. Mullins (2014). EMERGING DATA COLLECTION TECHNIQUES FOR TRAVEL DEMAND MODELING: A LITERATURE REVIEW. Texas A&M Transportation Institute College Station, Texas.

PAPERS REVIEW ON VEHICLES GPS DATA

- Marra, Alessio D.; Becker, Henrik; Axhausen, Kay W.; Corman, Francesco (2018). Developing a passive GPS tracking system to study long-term travel behavior. Research Collection, ETH Zurich, 29 p.
- Marcelle D. Ribeiroa, Ana M. Larrañagaa, Julian Arellanab, Helena B. B. Cybis (2014). Influence of GPS and self-reported data in travel demand models. Procedia - Social and Behavioral Sciences, 162, pp. 467–476.
- Chris McCahill (2017). Understanding Trip-Making with Big Data. State Smart Transportation Initiative, 12 p.
- 11.Marija Nikoli, Michel Bierlaire (2017). Review of transportation mode detection approaches based on smartphone data. 17th Swiss Transport Research Conference, 18 p.
- 12.Montini, Lara; Prost, Sebastian; Schrammel, Johann; Rieser-Schüssler, Nadine; Axhausen, Kay W. (2015). Comparison of travel diaries generated from smartphone data and dedicated GPS devices. Transportation Research Proceedia 11, 227 – 241.
- Montini, L., K. W. Axhausen and C. Antoniou (2017). ROUTE AND MODE CHOICE MODELS USING GPS DATA. 96th Annual Meeting of the Transportation Research Board (TRB 2017), Washington, DC, USA, January 8-12, 29 p.
- Stefan SCHÖNFELDER, Kay W. AXHAUSEN, Nicolas ANTILLE, Michel BIERLAIRE (2002). GI-Technologien f
 ür Verkehr und Logistik, 13, 155—179.
- 15.Andre Carrel, Peter S.C. Lau, Rabi G. Mishalani, Raja Sengupta, Joan L. Walker (2017). Quantifying transit travel experiences from the users' perspective withhig high-resolution smartphone and vehicle location data. 15 p.

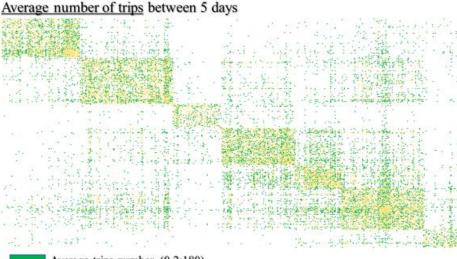
SETTING UP METHODOLOGY FOR THE ANALYSIS OF ORIGIN-DESTINATION FLOWS

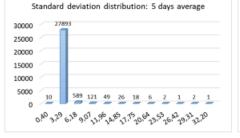
Statistic data evaluation:

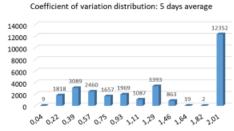
Sampling units – Private cars trips	_	Case study – Veneto Region :
Samping and Thrace calls app		Sampling units – Private cars trips
		The observation period: October – November 2018.

SETTING UP METHODOLOGY FOR THE ANALYSIS OF ORIGIN-DESTINATION FLOWS

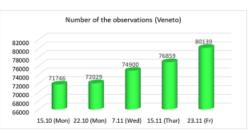
5






5

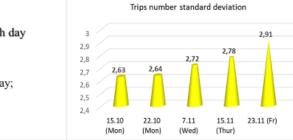
FORMALIZATION OF THE SAMPLE SIZE DEFINITION METHODOLOGY

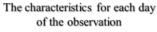

FORMALIZATION OF THE SAMPLE SIZE DEFINITION METHODOLOGY

Average trips number (0.2;180) Average trips number(180;380)

Average trips number: more then 380 trips

2,79


23.11 (Fr)


2,68

15.11

(Thur)

FORMALIZATION OF THE SAMPLE SIZE DEFINITION METHODOLOGY

Average number of trips

2,61

7.11

(Wed)

- average number of o-d pairs; -
- standard deviation for each day;
- min-max diagram. -

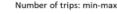
22.10

(Mon)

2,8

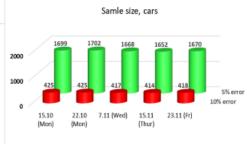
2,7

2,6

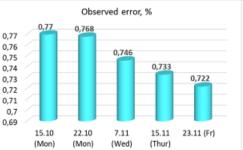

2,5

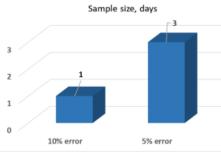
2.4

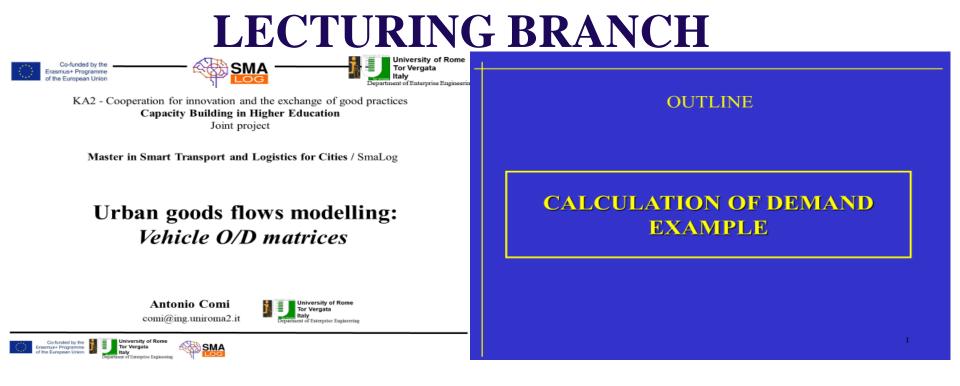
2.3


15.10

(Mon)




SAMPLE SIZES DEFINITION



10% error 5% error

Samle size. 10 % 5% cars Error of the Observed observations 10% 5% error, % Standard error error error 15.10 (Mon) 0,1276 0,0638 425 1699 0,77 22.10 (Mon) 0.1281 0.064 425 1702 0.768 7.11 (Wed) 0,1332 0.0666 417 1668 0.746 15.11 (Thu) 0,1367 0.0684 414 1652 0,733 23.11 (Fr) 0.1423 0.0712 418 1670 0.722 Sample size, 0.1336 3,649 0.0668 1 3 days

SOCIAL COST BENEFIT ANALYSIS-CBA

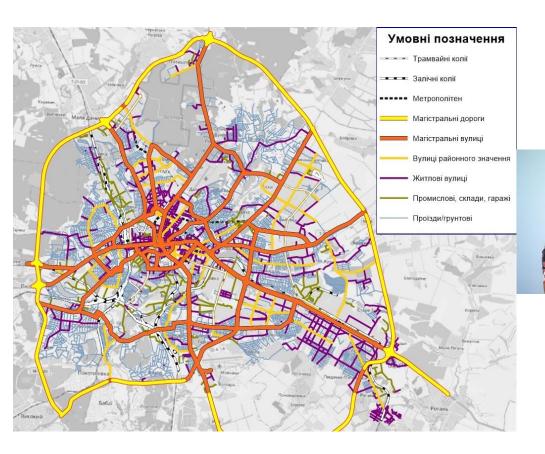
1-Introduction to Social cost-benefit analysis 2-Microeconomics: welfare economics Adapted from: Basics of Transport Economics L.H. Immers - J.E. Stada 3- Surplus variation with Descriptive Demand Model Approach Adapted from: Ennio Cascetta Transportation System Engineering: Theory and Methods- Kluwer COST-BENEFIT ANALYSIS BASIC THEORY: Microeconomics: welfare economics

> ADAPTED FROM Basics of Transport Economics L.H. Immers J.E. Stada KATHOLIEKE UNIVERSITEIT LEUVEN

OUTCOMES...

PROJECTS

Development of Sustainable Urban Mobility Plan (SUMP) for Kharkiv



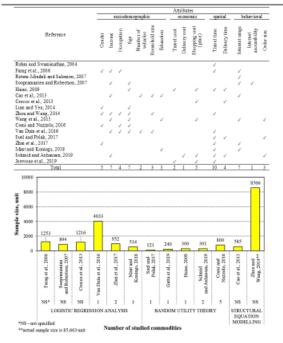
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

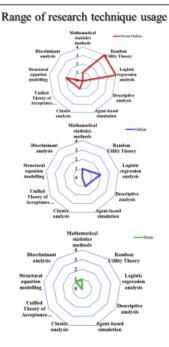
Швейцарська Конфедерація

NUUE Team

PROJECTS

Fulbright Visiting Scholar 2019-2020





Department of Civil and Environmental Engineering Rensselaer Polytechnic Institute

CURRENT STUDIES ON PURCHASE PATTERNS

Fulbright Visiting Scholar Program

Co-funded by the Erasmus+ Programme of the European Union

THANK YOU, OUR DEAR EUROPEAN MENTORS

