

KA2 - Cooperation for innovation and the exchange of good practices Capacity Building in Higher Education

Joint project

Master in Smart Transport and Logistics for Cities / SmaLog Batumi (Georgia), Sept. 13-14, 2018

1st Annual Training Seminar on SmaLog issues

Urban Goods Flow Modelling 2

Agostino Nuzzolo - Antonio Comi Department of Enterprise Engineering University of Rome Tor Vergata nuzzolo@ing.uniroma2.it

Urban goods flows modelling - 2: vehicle O/D matrices

Agostino Nuzzolo - Antonio Comi Department of Enterprise Engineering University of Rome Tor Vergata

Demand model \Rightarrow **O-D Matrices**

Demand model \Rightarrow **Vehicle O-D Matrices**

They give the average vehicle flow

 $VC_{od}^{sh}[tvr]$

transporting freight type s between the zone o and the zone d in a time period h characterized by:

 \succ service type (*r*)

 \succ departure time from origin (*t*)

 \succ vehicle type (*v*)

For simplicity of notation, the class index *s* (freight type) and *h* (time period) will be taken as understood unless otherwise stated \Rightarrow

$$VC_{od}[tvr]$$

Freight vehicle O-D matrices

Problem definition

O-D	0	d ₁	d ₂	d ₃	d ₄
0		nd ₁	nd ₂	nd ₃	nd_4
d ₁					
d ₂					
d ₃					
d ₄					

- Restocker jointly chooses the number and the location of deliveries for each restocking tour
- Each restocker defines his tours trying to reduce his costs (e.g. using routing algorithm)
- The O-D matrices are the **sum** of **single** restocker choices

FREIGHT VEHICLES

O-D	0	d ₁	d ₂	d ₃	d ₄
0		1			
d ₁			1		
d ₂				1	
d ₃					1
d ₄	1				

Freight vehicle O-D matrices *Delivery tour model*

The freight vehicle O-D matrices can be obtained from the Delivery O-D matrices through the delivery tour model

which uses a two-steps procedure:

- computation, from delivery O-D matrices, of the number of *delivery tours departing from each zone o* (*tour generation sub-model*)
- definition of *freight vehicle O-D matrices* from delivery tours (*delivery location sub-model*)

Demand model \Rightarrow **O-D Matrices**

Delivery tour model

Tour generation sub-model $T_{o}[vntr] = T_{o}[r] \cdot p[t / ro] \cdot p[n / tro] \cdot p[v / tnro]$ $T_{o}[r] = \frac{ND_{o}[r]}{\overline{n}} = \frac{ND_{o}[r]}{\sum_{n} n \cdot p[n / tro]}$

- ✓ T_o [*vntr*] is the number of tours departing (generated) from zone *o* at time *t* by transport service type *r* and vehicle type *v* with *n* stops/deliveries;
- ✓ $T_o[r]$ is the number of tours by transport service type *r* departing (generated) from zone *o*;
- ✓ $ND_{o}[r]$ is the average number of deliveries performed departing from origin zone *o*;
- ✓ p[t/ro] is the share or probability to undertake tour at time *t*;
- ✓ p[n/tro] is the share or probability to undertake tour with *n* stops/deliveries;
- ✓ p[v/tnro] is the share or probability to undertake tour by vehicle type *v*;
- $\checkmark \overline{n}$ is the average number of deliveries performed by a tours departing from origin zone *o* at time *t*;

Delivery tour model

Trip chain order (number of stops) model

$$p[n / or]$$
 $n = \{1, 2, ...\}$

is the share or the probability that a tour departing from a given zone *o* has *n* stops/deliveries.

It allows to characterize the tours departing from a given warehouse zone (*o*) in terms of number of stops/deliveries.

Trip chain order distribution

Revealed shares – wholesaler and carrier

Delivery tour model

Departure time model

p[t/ro]

is the share or the probability to start tour from zone o at time t

Departure time model

Revealed shares

p[v / nro]

$v = \{LGV, MGV\}$

is the share or the probability that a tour departing from a given zone o with n stops/deliveries, uses the vehicle of type v.

It allows us to characterize the tours departing from a given warehouse zone (*o*) in terms of type of vehicle used:

- LGV = Light Goods Vehicle
- *MGV* = *Medium Goods Vehicle*

Vehicle types Light Goods Vehicle- LGV

Maximum load: ~ 700 kg Load surface: ~ 2.5 mq

Maximum load: ~ 3,500 kg Load surface: ~ 3.8 mq Load volume: ~ 17.2 mc

Vehicle types *Heavy Goods Vehicle - HGV*

$\underline{HGV} \le 7.5 \ t$

Maximum load: ~ 7,000 kg Load surface: ~ 8 mq Load volume: ~ 20 mc

<u>HGV > 7.5 t</u> Maximum load : ~ 26,000 kg Load surface: ~ 10 mq Load volume: ~ 25 mc

Vehicle type Revealed shares

p[v / od]

	Foodstuffs	Home accessories	✓ Average transported quantity:
Light Goods Vehicle (less than 1.5 tons)	70%	51%	➤ LGV (< 1.5 t): 800 kg
Heavy Goods Vehicle (more than 1.5 tons)	30%	49%	➤ MGV (1.5 – 3.5 t): 1,716 kg
Total	100%	100%	

- ✓ *Two main approaches:*
 - disaggregate: routing-based algorithms
 - aggregate: partial shares

Delivery location sub-model (partial shares)

Delivery tour model *Delivery location model*

$$p\left[d_{j}^{k+1} / d_{i}^{k} vno\right]$$
 $k = \{0, 1, 2, ..., k\}$

is the share or the probability of delivering in zone d_j the delivery (k+1) conditional to have previously delivered in zone d_i the delivery k, within a tour with n stops/deliveries departing from a given zone o and using a vehicle of type v.

It allows us to define the sequence of zones delivered during the tour.

...}

Examples of delivery tour models

ND_{od}

$$T_o[n] = ND_{o}/\overline{n} \cdot p[n/o]$$

$$T_o[tn] = T_o[n] \cdot p[t / no]$$

$$T_{o}[vtn] = T_{o}[tn] \cdot p[v / no]$$

$$p\left[d_{j}^{k+1} / d_{i}^{k} vno\right]$$

$$VC_{d_id_j}[vno]$$

Delivery tour model

$$ND_{od}$$
$$T_{o}[n] = ND_{o}/\overline{n} p[n/o]$$
$$T_{o}[tn] = T_{o}[n] \cdot p[t/no]$$

$$T_{o}[vtn] = T_{o}[tn] \cdot p[v / no]$$

$$p\left[d_{j}^{k+1} / d_{i}^{k} vno\right]$$

$$VC_{d_id_j}[vno]$$

Trip chain order distribution

p[n/tro] is the probability that deliveries are performed by tours departing from a given zone o with n stops/deliveries; it can be expressed by a logit model:

$$p[n / tro] = \frac{\exp(V_n)}{\sum_{n'} \exp(V_{n'})} \qquad n \in I = \{number of stops / deliveries\} \\ V_n = \sum_j \beta_j X_{jn}$$

 X_{jn} is the *j*-th attribute related to have tour with *n* stops/deliveries.

Example of trip chain order distribution model

Wholesaler in own account

The systemic utility, V_n , has been specified as linear combination of the following attributes:

- *VEH*, dummy variable equal to *1* if the used vehicle is a Light Goods Vehicle, *0* otherwise;
- q, average quantity of freight delivered at each stop (i.e. delivery point) along the journey, expressed in tons;
- *FGT*, dummy variable equal to *1* if the delivered freight belongs to the *foodstuffs* class, *0* otherwise;
- *IAA_o*, *retailer* accessibility index of zone *o*, from which the tour departs (e.g. warehouse location): $IAA = \begin{bmatrix} AA & \min(AA) \end{bmatrix} / \left[\max(AA) \end{bmatrix}$

$$IAA_{o} = \left[AA_{o} - \min_{z} (AA_{z})\right] / \left[\max_{z} (AA_{z}) - \min_{z} (AA_{z})\right]$$

where AA_x is the accessibility of zone x estimated as:

$$AA_{x} = \sum_{j} \left(UL_{j} \right)^{6.334} \cdot \exp\left[-3.913 \cdot dist_{xj} \right]$$

✓ UL_j the number of retail establishments of zone *j* to be restocked,

 \checkmark *dist*_{xj} the distance between zone x and j,

 $\checkmark \alpha_1$ and α_2 calibration parameters,

Example of trip chain order distribution model

Wholesaler in own account

$$\rho^2 = 0.18$$

 $p[n / to] = \exp(V_n) / \sum_{n'} \exp(V_{n'}) \quad n \in I = \{1 \text{ stop}, 2 \text{ stops}, 3 \text{ stops}, > 3 \text{ stops}\}$

 $V_{1} = 2.430 + 0.252 \cdot VEH$ $V_{2} = -0.399 \cdot VEH - 0.075 \cdot \ln(IAA_{\circ}) - 0.151 \cdot q + 0.965 \cdot FGT + 2.429_{(2.6)}$ $V_{3} = -0.042 \cdot \ln(IAA_{\circ}) + 1.381 \cdot FGT + 1.788_{(1.8)}$ $V_{>3} = -0.799 \cdot VEH - 0.082 \cdot \ln(IAA_{\circ}) - 0.195 \cdot q + 2.512 \cdot FGT_{(3.1)}$ Iight goods vehicles
increasing the accessibility of restocking stops/deliveries per stops/deliveries.

Delivery tour model

Structure

p[v/nto] is the probability to restock by vehicle type v; it can be expressed by a logit model:

$$p[v/nto] = \frac{\exp(\alpha V_v)}{\sum_{v'} \exp(\alpha V_{v'})} \qquad V_v = \Sigma_j \beta_j X_{jv}$$

 X_{jv} is the *j*-th attribute related to vehicle type v.

Retailer in own account

$$V_{car} = 1.01_{(3.4)}$$

$$V_{lgv} = 0.003 \cdot EM + 0.50 \cdot q + 0.05_{(2.2)} \cdot q + 0.05_{(3.4)}$$

$$V_{mgv} = 0.004 \cdot EM + 3.00 \cdot q + 0.006 \cdot STORE_{(1.4)}$$

$$\rho^2 = 0.38$$

where

- V_{car} is the systematic utility for using the *car* (e.g. SUV, station-wagon, pick-up),
- V_{lgv} is the systematic utility for using the *Light Goods Vehicle* (<1.5 ton),
- V_{mgv} is the systematic utility for using the *Medium Goods Vehicle* (1.5 3.5 tons),
- *STORE* is the surface of store, expressed in m²,
- *EM* is the number of employees at shop to be restocked,
- q is the average *shipment size*, expressed in tons.

Retailer in own account

$$V_{car} = 1.01_{(3.4)}$$

$$V_{lgv} = 0.003 \cdot EM + 0.50 \cdot q + 0.05_{(2.2)} \cdot q + 0.05_{(3.4)}$$

$$V_{mgv} = 0.004 \cdot EM + 3.00 \cdot q + 0.006 \cdot STORE_{(1.4)}$$

$$\rho^2 = 0.38$$

where

- V_{car} is the systematic utility for using the *car* (e.g. SUV, station-wagon, pick-up),
- V_{lgv} is the systematic utility for using the *Light Goods Vehicle* (<1.5 ton),
- *V_{mgv}* is the systematic utility for using the *STOR STOR EM* is *car* for *small shops q* is the with few employees and a *small depot The type of vehicle depends on average shipment size q* is the *systematic utility for using the type of vehicle depends on average shipment size q* is the *systematic utility for using the type of vehicle depends on average shipment size q* is the *systematic utility for using the type of vehicle depends on average shipment size*

Delivery tour model

Structure

ND_{od}

$$T_o[n] = ND_{o}/\overline{n} \cdot p[n/o]$$

 $T_o[tn] = T_o[n] \cdot p[t / no]$

$$T_{o}[vtn] = T_{o}[tn] \cdot p[v / no]$$

$$p\left[d_{j}^{k+1} / d_{i}^{k} vno\right]$$

$$VC_{d_id_j}[vno]$$

$$p\left[d_{j}^{k+1} / d_{i}^{k} vno\right] = \exp\left(V_{d_{j}^{k+1}}\right) / \sum_{d'} \exp\left(V_{d'}\right)$$

 $p\left[d_{j}^{k+1}/d_{i}^{k} vnro\right]$ is the probability of delivering in zone d_{j} the delivery (k+1) conditioned to have previously delivered in zone d_{i} the delivery k within a tour with n deliveries that departs from zone o,

 $V_{d_i^{k+1}}$ is the systematic utility of delivering in zone d_j the delivery (k+1)

The survey has revealed that different behaviors could be followed by a restocker in the choice of first destination within a tour and the following ones

- Choice of first delivery location,
- Choice of following delivery locations

Delivery location model

 ✓ Wholesaler in own account and carrier: first delivery location

$$\rho^2 = 0.33$$

$$V_{d_j^1} = 0.213 \cdot \ln\left(AD_{d_j^1}\right) - 0.028 \cdot dist_{od_j^1} + 2.03 \cdot DS_{od_j^1} + 7.84 \cdot IAA_{d_j^1}$$

- AD_{di} is the number of retail employees in zone d_i ;
- $dist_{odj}$ is the distance between zone o and d_j , expressed in km;
- DS_{odj} is the share of deliveries on od_j pair respect to all deliveries departing from zone o;
- IAA_{dj} is the retailer accessibility of zone d_j .

✓ Wholesaler in own account and carrier: first delivery location

 $\rho^2 = 0.33$

✓ Wholesaler in own account and carrier: next delivery locations

$$V_{d_{j}^{k+1}} = 0.291 \cdot \ln\left(AD_{d_{j}^{k+1}}\right) + 8.408 \cdot DS_{od_{j}^{k+1}} - 0.325 \cdot dist_{d_{i}^{k}d_{j}^{k+1}} + -1.655 \cdot \ln\left(HT_{d_{j}^{k+1}}\right) + 1.064 \cdot ASA_{d_{j}^{k+1}=d_{i}^{k}}$$

- AD_{di} is the number of retail employees in zone d_i ;
- $dist_{didj}$ is the distance between zone *o* and d_j , expressed in km;
- DS_{odj} is the share of deliveries on od_j pair respect to all deliveries departing from zone o;
- HT_{dj} is the ratio between the distance to be covered to reach the next delivery location and the current covered distance.

 ✓ Wholesaler in own account and carrier: next delivery locations

 $= 0.291 \cdot \ln (AD_{+1} + 8.408 \cdot DS_{+1})$

- AD_{dj} is the number of retail employees in zone d_j ;
- *dist_{didj}* is the distance between zone o and d_j, expressed in km; *DS_{odj}* is the share of deliveries on od_j pair respect to all deliveries departing

 $-1.655 \cdot \ln \left(HT_{d_{i}^{k+1}} \right) + 1.064 \cdot ASA_{d_{i}^{k+1} = d_{i}^{k}}$

• HT_{dj} The probability of a zone increases with its attraction capacity he distance to be covered to r The probability of a Y covered distance. The probability of a Y zone increases with its its closeness

 $\rho^2 = 0.25$

 $0.325 \cdot dist_{d_i^k \underline{d}_i^{k+1}}$

Revealed vs Estimated Freight Vehicle O-D flows (ZTL in Rome)

Exercise

Traffic zones

- departing at 10:30 in time slice before 11am
- departing at 11:30 in time slice after 11am
 - Maximum 3 stops

• One vehicle type

Stops per tour

r = Retailer o. a.

	<i>num</i> =1	<i>num</i> =2	<i>num</i> =3	average
Zone 1	50%	20%	30%	33%
Zone 2	40%	20%	40%	33%
Zone 3	60%	30%	10%	33%
average	50%	23%	27%	33%

	<i>num</i> =1	<i>num</i> =2	<i>num</i> =3	average
Zone 1	10%	70%	20%	33%
Zone 2	20%	60%	20%	33%
Zone 3	40%	50%	10%	33%
average	23%	60%	17%	33%

$$\overline{n}[ro] = \sum_{n} n \cdot p[n / ro]$$

	$\overline{n}[ret]$	\overline{n} [oth]
Zone 1	1.8	2.1
Zone 2	2.0	2.0
Zone 3	1.5	1.7

Tour departing from each zone

$$T_{o}[t\tau r] = ND_{o}[t\tau r]/\overline{n}$$

r = Retailer o. a.

	T _o [departing at 10:30 am]
Zone 1	8.3
Zone 2	78.3
Zone 3	35.1
Total	121.7

	T _o [departing at 11:30 am]
Zone 1	52.2
Zone 2	575.5
Zone 3	227.7
Total	855.4

r = Other

	T _o [departing at 10:30 am]
Zone 1	3.6
Zone 2	33.6
Zone 3	15.0
Total	52.2

	T _o [departing at 11:30 am]
Zone 1	22.4
Zone 2	246.6
Zone 3	97.6
Total	366.6

Tour departing from each zone and num. of stops

$$T_o[vn\tau r] = T_o[t\tau r] \cdot p[n/t\tau ro]$$

r = Retailer o. a.

at 10:30 am				at 11:30 am					
	To[n=1]	To[n=2]	To[n=3]	Total		To[n=1]	To[n=2]	To[n=3]	Total
Zone 1	4.2	1.7	2.5	8.4	Zone I	5.2	36.5	10.4	52.1
Zone 2	31.3	15.7	31.3	78.3	Zone 2	2 115.1	345.3	115.1	575.5
Zone 3	21.1	10.5	3.5	35.1	Zone 3	8 91.1	113.9	22.8	227.8
Total	56.6	27.9	37.3	121.8	Total	211.4	495.7	148.3	855.4

r = Other

	at 10:30 am					at 11:30 am			
	To[n=1]	To[n=2]	To[n=3]	Total		To[n=1]	To[n=2]	To[n=3]	Total
Zone 1	1.8	0.7	1.1	3.6	Zone 1	2.2	15.7	4.5	22.4
Zone 2	13.4	6.7	13.4	33.5	Zone 2	49.3	148.0	49.3	246.6
Zone 3	9.0	4.5	1.5	15.0	Zone 3	39.0	48.8	9.8	97.6
Total	24.2	11.9	16.0	52.1	Total	90.5	212.5	63.6	366.6

Vehicle O-D matrix procedure

Iterative Algorithm

1/2

The 1° iteration: calculation of the first trips of tours

Tour Matrices of the 1° stop			Vehicle matrice					Vehicle of the 1°stop		;						
T _o [1	n=2]		p[d ¹ _j /d ⁰ _i]	d ₁	d ₂	d ₃	tot		O-D	d ₁	d ₂	d ₃	tot	T ¹ ₀ [[n=2]	
d ₁	100		d ₁	20%	50%	30%	100%		d ₁	20	50	30	100	d ₁	200	
d ₂	200		d ₂	60%	20%	20%	100%		d ₂	120	40	40	200	d ₂	135	Π
d ₃	150		d ₂	40%	30%	30%	100%		d ₃	60	45	45	150	d3	115	H
			5		5				tot	200	135	115	450			Ľ
	Split of vehicle trips Vehicles arriving to the 1° destination															

Vehicle O-D matrix procedure

Iterative Algorithm

The 2° iteration: calculation of the successive trips of tours

Vehic	Vehicle matrice					Vehicl	e of the	e
						2°stop		1
O-D	d ₁	d ₂	d ₃	tot		T ² ₀ [
d ₁	60	80	60	200		d ₁	137	
d ₂	54	54	27	135		d ₂	203	
d ₃	23	69	23	115		d.	110	
tot	137	203	110	450		5		1

Vehicles arriving to the 2° destination

 \mathbf{d}_1

80

174

83

337

d,

130

94

114

338

d₃

90

67

68

225

tot

300

335

265

900

O-D

VC

 \mathbf{d}_1

 \mathbf{d}_2

d₃

tot

h	0
_	7
	ட்

2/2

Choice of vehicle type and delivery zone $T_o[vnt\tau r] = T_o[t\tau r] \cdot p[n/t\tau ro] \cdot p[v/n\tau ro]$

 $p\left[d_{i}^{k+l} / d_{i}^{k}\right]$

	Zone 1	Zone 2	Zone 3	Total
Zone 1	20%	50%	30%	100%
Zone 2	60%	20%	20%	100%
Zone 3	40%	30%	30%	100%

Retailer o. a., departing at 10:30 am, n = 1 stop

	Zone 1	Zone 2	Zone 3	Total
Zone 1	0.8	2.1	1.3	4.2
Zone 2	18.8	6.3	6.3	31.3
Zone 3	8.4	6.3	6.3	21.1
Total	28.1	14.7	13.9	56.6

Retailer, departing at 10:30 am, n = 2 stops

1° Iteration

	Zone 1	Zone 2	Zone 3	Total
Zone 1	0.3	0.9	0.5	1.7
Zone 2	9.4	3.1	3.1	15.7
Zone 3	4.2	3.2	3.2	10.5
Total	14.0	7.1	6.8	27.9

 2° Iteration

	Zone 1	Zone 2	Zone 3	Total
Zone 1	2.8	7.0	4.2	14.0
Zone 2	4.3	1.4	1.4	7.1
Zone 3	2.7	2.0	2.0	6.8
Total	9.8	10.4	7.7	27.9

Total **Full**

	Zone 1	Zone 2	Zone 3	Total
Zone 1	3.1	7.8	4.7	15.7
Zone 2	13.7	4.6	4.6	22.8
Zone 3	6.9	5.2	5.2	17.3
Total	23.8	17.6	14.5	55.8

Retailer, departing at 10:30 am, n = 3 stops

1° Iteration

	Zone 1	Zone 2	Zone 3	Total
Zone 1	0.5	1.3	0.8	2.5
Zone 2	18.8	6.3	6.3	31.3
Zone 3	1.4	1.1	1.1	3.5
Total	20.7	8.6	8.1	37.3

 2° Iteration

	Zone 1	Zone 2	Zone 3	Total
Zone 1	4.1	10.3	6.2	20.7
Zone 2	5.1	1.7	1.7	8.6
Zone 3	3.2	2.4	2.4	8.1
Total	12.5	14.5	10.3	37.3

3° Iteration

	Zone 1	Zone 2	Zone 3	Total	
Zone 1	2.5	6.2	3.7	12.5	
Zone 2	8.7	2.9	2.9	14.5	
Zone 3	4.1	3.1	3.1	10.3	
Total	15.3	12.2	9.7	37.3	フ

Total **Full**

	Zone 1	Zone 2	Zone 3	Total
Zone 1	7.1	17.8	10.7	35.7
Zone 2	32.6	10.9	10.9	54.3
Zone 3	8.8	6.6	6.6	21.9
Total	48.5	35.3	28.1	111.9

departing at 10:30 am

Retailer o. a.

Full	Zone 1	Zone 2	Zone 3	Total
Zone 1	11.1	27.8	16.7	55.5
Zone 2	65.1	21.7	21.7	108.5
Zone 3	24.1	18.1	18.1	60.3
Total	100.3	67.6	56.4	224.3

Other

Full	Zone 1	Zone 2	Zone 3	Total
Zone 1	88.5	221.3	132.8	442.7
Zone 2	473.4	157.8	157.8	789.1
Zone 3	166.4	124.8	124.8	415.9
Total	728.4	503.9	415.4	1.647.7

departing at 11:30 am

Retailer o. a.

Other

Full	

	Zone 1	Zone 2	Zone 3	Total		
Zone 1	4.8	11.9	7.1	23.8		
Zone 2	27.9	9.3	9.3	46.4		
Zone 3	10.3	7.7	7.7	25.8		
Total	42.9	28.9	24.2	96.0		

Full

	Zone 1	Zone 2	Zone 3	Total	
Zone 1	38.0	94.9	56.9	189.8	
Zone 2	202.9	67.6	67.6	338.2	
Zone 3	71.3	53.5	53.5	178.3	
Total	312.2	216.0	178.1	706.3	

Total Vehicle O-D matrices

departing at 10:30 am

	Zone 1	Zone 2	Zone 3	Total
Zone 1	99.6	249.1	149.5	498.2
Zone 2	538.5	179.5	179.5	897.5
Zone 3	190.5	142.9	142.9	476.2
Total	828.7	571.5	471.8	1.872.0

departing at 11:30 am

	Zone 1	Zone 2	Zone 3	Total
Zone 1	42.7	106.8	64.1	213.6
Zone 2	230.8	76.9	76.9	384.6
Zone 3	81.6	61.2	61.2	204.1
Total	355.1	245.0	202.2	802.3

